Justification
This species is widespread and rare. Global level, species-specific population data are limited; however, coral reefs have declined globally and are expected to continue rapidly declining due to increasing severe bleaching conditions under temperature stress caused by climate change as well as a variety of other threats. Our species-specific vulnerability traits analysis indicates this species is highly susceptible to major threats related to coral reef degradation (e.g., disease and bleaching). We applied two analytical approaches involving two different global coral datasets and the species’ distribution map as proxies to infer population decline. Based on global coral cover monitoring data, this species experienced a suspected decline of about 12% over the past three generations, or since 1989. Based on the projected onset of annual severe bleaching (ASB) conditions via both SSP2-4.5 and SSP5-8.5 scenarios of global climate model data, in combination with the species’ depth range, distribution and bleaching vulnerability, this species is suspected to decline by at least 31% over the next three generations, or by 2050. Since the species qualifies for a higher category under the projected decline, we therefore list it as Vulnerable A3ce. The change in status from the previous assessment reflects updated declines calculated from improved data on modeled coral cover loss and projected date of annual severe bleaching, along with improved knowledge of species traits.
Geographic Range Information
This species is distributed from the Red Sea, the southwest and northern Indian Ocean (Venkataraman and Satyanarayana 2012), the central Indo-Pacific, Australia, Southeast Asia, Japan, the East China Sea, the oceanic West Pacific, and the Central Pacific. Records from the eastern central Pacific are doubtful.
The depth range is 2-70 m, but the species primarily occurs from 10-50 m (Bridge et al. 2012, Muir and Pichon 2019, Turak and DeVantier 2019, L. DeVantier pers. comm. 2024).
Population Information
This species is rare (DeVantier and Turak 2017). In the Maldives, this species, along with other Montipora species, has exhibited decreased numbers of coral recruits (McClanahan 2000).
Species-specific, global level population information is limited. However, coral reefs are experiencing severe global level declines due to increasing water temperatures caused by climate change (Hoegh-Guldberg et al. 2017, Hughes et al. 2018, Donovan et al. 2020). For the purposes of this Red List assessment, we used species-specific vulnerability traits and two analytical approaches based on two global coral datasets to infer past (GCRMN 2021) and future (UNEP 2020) population trends.
Approach 1: Future population trend
The projected onset of annual severe bleaching (ASB) was applied as a proxy to estimate global level population decline. ASB represents the date at which a coral reef will likely experience severe bleaching conditions annually, and beyond which the species will experience a greater than 80% decline as it is not expected to recover (van Hooidonk et al. 2014). ASB is defined as at least eight Degree Heating Weeks (DHW) occurring over a three-month period within a year, and where a DHW occurs when the sea surface temperature is at least 1°C above the maximum monthly mean (van Hooidonk et al. 2014; 2015). We defined the onset of ASB as corresponding to 80% or more decline, however, this is conservative as other studies have found that coral populations may experience near complete mortality and are unlikely to recover with just two incidences of ASB per decade (Obura et al. 2022).
To calculate ASB for each species we applied spatial data made publicly available via a United Nations Environment Programme report (UNEP 2020) that used the 2019 IPCC CMIP6 global climate models to estimate the projected onset of ASB for the years 2015-2100 on a 27 km x 27 km grid according to the 2018 WCMC-UNEP global coral reef distribution map, which has a resolution to 30 m depth. These data are available via two scenarios of Shared Socioeconomic Pathways (SSP), with SSP5-8.5 representing current global emissions and SSP2-4.5 representing a future reduction in emissions (UNEP 2020). We applied SSP5-8.5 since it follows the precautionary approach recommended by the IUCN Red List methodology and SSP2-4.5 since it represents a more moderate climate change scenario that better tracks current policy projections (Roelfsema et al. 2020, Obura et al. 2022). To acknowledge varying levels of coral adaptation to thermal stress, both of these spatial data layers are available for all quarter degree intervals between 0° and 2°C (UNEP 2020); however, coral adaptation in general is little understood and varies by species and locality (Bay et al. 2017, Matz et al. 2020, Logan et al. 2021). To account for adaptation, we calculated two estimates of ASB onset for both the SSP5-8.5 and the SSP2-4.5, where the first estimate assumes the species has no level of adaptation (0°C) and the second assumes a capacity for 1°C of adaptation. We clipped each of these four UNEP (2020) spatial data layers to the species’ distribution and calculated the average year of ASB onset across all overlapping grid cells.
Based on this spatial analysis, the onset of ASB across this species’ range is projected to occur on average by the year 2034 for SSP5-8.5 and by 2038 for SSP2-4.5 assuming no level of adaptation and by the year 2062 for SSP5-8.5 and by 2070 for SSP2-4.5 assuming 1°C of adaptation. For species where ASB occurs within 3-generation lengths, the 3-generation reduction is calculated as 80% multiplied by two proportions: (i) the proportion of the species' depth range that is in 0–30 m range, and (ii) for widespread species, the proportion of cells within the species' range that are expected to experience ASB under SSP2-4.5 before 2050 (three generation lengths). We inferred that the uncertainty associated with the estimate of population decline based on no level of adaptation is lower given this species is not primarily restricted to depths shallower than 30 m and is highly susceptible to bleaching. Furthermore, since the depth range of this species is 2-70 m with the highest abundance occurring between 10-50 m, population decline was estimated over 40% of its depth range. For widespread species, the final estimate of decline was further adjusted by excluding the proportion of cells within its range that were expected to experience ASB under SSP2-4.5 after 2050 (three generation lengths), in order to account for the potential resilience of species to the asynchronous variability of bleaching events that occur across the Indo-Pacific. The relative vulnerability to bleaching (i.e., highly susceptible, moderately susceptible, or more resilient) is primarily based on scientific species expert knowledge. The application of the species’ depth range as a vulnerability factor is based on the assumption that a coral species with shallow depth preferences is more frequently exposed to extreme temperatures and might decline at a faster rate in some places than species that also occur in deeper, cooler waters (Riegl and Piller 2003), although this is not always the case (e.g., Smith et al. 2016, Frade et al. 2018). Ocean acidification, which is measured by aragonite saturation, is also considered a major threat to corals due to the impacts of climate change, however, the impacts are expected to be more severe in cooler and/or deeper waters (Couce et al. 2013, van Hooidonk et al. 2014, Hoegh-Guldberg et al. 2017). Although the exact threshold of aragonite saturation that is expected to cause significant decline is not well-known, in the Pacific, changes in aragonite saturation are expected to be most severe in high-latitude reefs (van Hooidonk et al. 2014). Therefore, this species is suspected to experience a projected global level decline of at least 31% by the year 2050, or three generations in the future, regardless of the SSP2-4.5 or SSP5-8.5 scenario.
Approach 2: Past population trend
Coral reef monitoring data were also applied as a proxy to estimate global level population decline. The Global Coral Reef Monitoring Network (GCRMN) compiled data related to the status and trends of coral reefs in 10 regions from 1978-2019 via the scientific monitoring observations of more than 300 network members located throughout the world. We applied the publicly available data on estimations of the percent of live hard coral cover loss at the 20%, 50% and 80% confidence intervals in the 37 subregions of the Indo-Pacific (GCRMN 2021) to estimate species population decline over the past three generations (1989-2019). The proportion of the species’ range that overlapped with each of the subregions was estimated using the Red List distribution map. The sum of the proportion of the subregional species distribution multiplied by the percent of coral cover loss in each subregion was then used to calculate the 20%, 50% and 80% estimates of coral loss across this species’ range.
To inform the choice of the best (i.e., lowest level of uncertainty) out of the three percentile declines, we considered 11 species-specific traits related to vulnerability to coral cover loss. Given this species’ depth range is 2-70 m and is predominately found at depths greater than 10 m, generalized abundance is considered rare, overall population is not restricted or highly fragmented, does not occur off-reef, is highly susceptible to disease, does recover well from bleaching or disease, has a high susceptibility to crown-of-thorns starfish, is highly susceptible to bleaching, has a relatively higher susceptibility to the impacts of ocean acidification (Kornder et al. 2018), did not have >10,000 pieces exported annually in the aquarium trade between 2010-2019, it is overall suspected to be highly susceptible to threats related to reef degradation. Therefore, past decline was inferred from the 50% percentile of estimated coral cover loss, resulting in a suspected global level decline of about 12% since 1989, or over the past three generations.
Habitat and Ecology Information
This species occurs in shallow, tropical reef environments in crevices and beneath overhangs in semi-shaded areas. It has also been recorded on mesophotic reefs (Bridge et al. 2012). This species is associated with Symbiodinium C17 on high-latitude reefs around Korea (De Palmas et al. 2015).
While there is some information regarding the age at which corals reach sexual maturation, it is largely based on measurements of size as a proxy for age (Harrison and Wallace 1990, Rapuano et al. 2023), which can be problematic in modular animals because of processes such as partial mortality and fission (Hughes and Jackson 1980). Nonetheless, it appears that many brooding coral species tend to reach puberty at about 1-2 years of age, which is much earlier than many broadcast-spawners whose age at first maturity is typically 4 years; however, it can vary between 3 and 8 years (Harrison and Wallace 1990, Iwao et al. 2010, Baria et al. 2012, Montoya-Maya et al. 2014, Ligson and Cabaitan 2021). Furthermore, based on average sizes and growth rates, we assume that the average generation length is 10 years, unless otherwise stated. Total longevity is not known for any coral, but is likely to be more than ten years. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Threats Information
Species in the genus Montipora are susceptible to bleaching. Species in the genus tend to be quite fast growing and reproduce asexually by fragmentation, so if they can re-establish after mortality, they can recover fast.
In general, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification.
The most recent, and first, multi-year, global bleaching event (spanning hundreds of kilometres or more) was from 2014 to 2017. Nearly 30% of reefs suffered mortality level-stress, more than 50% of affected reef areas were impacted at least twice, and some locations saw almost complete coral cover loss (Eakin et al. 2019). The average interval between bleaching events is now more than 50% less than before, preventing full reef recovery (Hughes et al. 2018). Bleaching events, leading to coral mortality, are predicted to become more frequent and severe (e.g., Crabbe 2019).
Crown-of-thorns starfish (COTS) (Acanthaster planci) are found throughout the Pacific and Indian Oceans, and the Red Sea. These starfish are voracious predators of reef-building corals, with a preference for branching and tabular corals such as Acropora species. Populations of the crown-of-thorns starfish have greatly increased since the 1970s and have been known to wipe out large areas of coral reef habitat. Increased breakouts of COTS has become a major threat to some species, and have contributed to the overall decline and reef destruction in the Indo-Pacific region. The effects of such an outbreak include the reduction of abundance and surface cover of living coral, reduction of species diversity and composition, and overall reduction in habitat area.
Coral disease has emerged as a serious threat to coral reefs worldwide with increases in numbers of diseases, coral species affected, and geographic extent (Ward et al. 2004, Sutherland et al. 2004, Sokolow et al. 2009). Outbreaks of coral diseases have damaged coral reefs worldwide with the most widespread, virulent, and longest running coral disease outbreak currently occurring on the Florida Reef Tract and throughout the Caribbean. The disease, stony coral tissue loss disease, has been ongoing since 2014 (Precht et al. 2016) and has devastated affected reefs along Florida (Walton et al. 2018, Williams et al. 2021) and throughout the Caribbean (Alvarez-Filip et al. 2019, Kramer et al. 2019). Numerous disease outbreaks have also occurred in the Indo-Pacific (Willis et al. 2004, Aeby et al. 2011; 2016), Indian Ocean (Raj et al. 2016) and Persian Gulf (Howells et al. 2020). Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.
Use and Trade Information
Conservation Actions Information
All stony corals are listed on CITES Appendix II. Parts of the species’ range overlaps with Marine Protected Areas.
Recommended measures for conserving this species include research in taxonomy, population, abundance and trends, ecology and habitat status, threats and resilience to threats, restoration action; identification, establishment and management of new protected areas; expansion of protected areas; recovery management; and disease, pathogen and parasite management. Artificial propagation and techniques such as cryo-preservation of gametes may become important for conserving coral biodiversity.