The global Beluga population consists of multiple subpopulations with varying degrees of differentiation and abundance (hereafter the terms subpopulation and stock are used interchangeably). Due to the lack of sampling, particularly in Russia, the total number of subpopulations is not precisely known. In 1999, the International Whaling Commission’s (IWC) Scientific Committee organized information on Belugas on the basis of 29 provisional management stocks (IWC 2000), and a recent (March 2017) Global Review of Monodontids hosted by the North Atlantic Marine Mammal Commission (NAMMCO) developed a list of 21 stocks (NAMMCO in prep.).
Stocks are generally based on nearshore areas (principally fjords, bays, and estuaries) where Belugas congregate during part of the open water season. Satellite telemetry, genetic studies, and organochlorine analyses have shown that Belugas have strong matrilineally driven fidelity to those areas (O’Corry-Crowe et al. 1997, 2002; Richard et al. 2001, de March et al. 2002, Innes et al. 2002, Palsbøll et al. 2002). Some stock boundaries overlap spatially and seasonally during winter and during the spring and fall migrations (Hauser et al. 2014). For stocks that winter in the Bering Sea, limited satellite tracking data suggest that areas used generally do not overlap in the same year, suggesting that Belugas from different stocks have traditional winter ranges that are mostly exclusive (Citta et al. 2017).
While good abundance estimates are available for some Beluga subpopulations, the sizes of others are virtually unknown or only roughly approximated (Laidre et al. 2015). Available information is summarized below.
Okhotsk Sea
Belugas occur in two well-separated regions of the Okhotsk Sea. In the northeastern region, they summer along the coast and in estuaries of Shelikhov Bay and winter along the ice edge of the Bay and northwestern Kamchatka. Based on surveys in 2010, Shpak and Glazov (2013) estimated there were 1,333 surface-visible Belugas in the northeastern Okhotsk Sea, resulting in an estimate of 2,666 total whales when corrected for availability bias (animals not seen because they were diving). In the western Okhotsk Sea, Belugas occur in the northern Sakhalin Bay and Amur River region as well as several smaller bays along the Shantar coast (Ulbansky Bay, Udskaya Bay, Tugursky Bay and Nikolskaya Bay. There Shpak and Glazov (2013) estimated 4,780 visible Belugas and 9,560 in total. The population trend is unknown in both regions.
Alaska and Western Canada
Five subpopulations of Belugas are known to occur in the Bering, Chukchi, and Beaufort seas. All five winter in the Bering Sea (Citta et al. 2017). The eastern Chukchi Sea and eastern Beaufort Sea subpopulations migrate northward in spring and spend summer and early fall well north of Bering Strait (Richard et al. 2001, Suydam 2009, Hauser et al. 2014), while the Bristol Bay, Anadyr Gulf, and eastern Bering Sea subpopulations remain in the Bering Sea south of Bering Strait (Citta et al. 2016, NAMMCO in prep., Alaska Beluga Whale Committee (ABWC) unpublished data).
Bristol Bay Belugas have been counted using aerial surveys conducted periodically between 1993 and 2016. Correction factors to account for animals missed were applied to counts made in 2004 and 2005 (Lowry et al. 2008) which produced an abundance estimate of 2,887 whales (Muto et al. 2016). Similar correction factors applied to the 2016 count resulted in a population estimate of 3,166 whales (ABWC unpublished data). Lowry et al. (2008) reported that counts of Bristol Bay Belugas increased by 4.8% per year during 1993-2005 (95% confidence interval (CI) 2.1–7.5%). The estimate based on 2016 counts was similar to 2004/05 suggesting that the increasing population trend had leveled off (ABWC unpublished data).
Belugas in Anadyr Gulf have never been surveyed adequately. An analysis of Beluga sightings obtained opportunistically during a survey for Pacific Walruses (Odobenus rosmarus divergens) conducted in the western Bering Sea in April 2006 estimated 15,125 Belugas in the area (with availability correction factor applied). However, the survey did not cover all areas known to be used by Anadyr Belugas, and it is possible that individuals from other subpopulations were also in the survey area. The maximum count along the coast in Anadyr Bay was 241 whales, and expert opinion suggests that the total Anadyr subpopulation is about 3,000 whales with fairly stable abundance (NAMMCO in prep.).
Aerial surveys for Belugas were flown in the eastern Bering Sea periodically during 1992-2001. Data collected in 2000 were used in distance sampling analysis that resulted in an estimate of 3,497 surface-visible Belugas in the survey area. The total abundance estimate was 6,994 whales (95% CI 3,162-15,472) when a correction factor for availability was applied (Lowry et al. in press). There are currently no data with which to estimate population trend, but another survey of the subpopulation was conducted in 2017.
Early estimates of the size of the eastern Chukchi Sea Beluga stock relied on June-July counts of whales in and near coastal lagoons with correction factors applied to account for animals missed. Those studies resulted in abundance estimates of roughly 2,000-4,000 whales (Seaman et al. 1988, Frost et al. 1993, Muto et al. 2016). Subsequent tagging of whales with satellite depth recorders (SDRs) showed that during summer they had a very broad distribution, including considerable time spent in offshore areas where they were missed during coastal lagoon surveys (Suydam 2009). Further analysis of SDR data from eastern Chukchi Sea and eastern Beaufort Sea Belugas (Hauser et al. 2014) showed there is a date range and region where data from offshore marine mammal surveys (Aerial Surveys of Alaskan Marine Mammals (ASAMM); Clarke et al. 2013) could be used to estimate abundance of the eastern Chukchi subpopulation. That analysis (Lowry et al. 2017) estimated there were 5,547 (CV 0.22) surface-visible Belugas in the study area in 2012. Data from SDRs were used to develop correction factors to account for animals that were missed because they were outside of the study area or diving too deep to be seen, resulting in a total abundance estimate of 20,752 whales (CV 0.70). Trend in abundance is unknown but there are several other years of ASAMM survey data that could be analyzed to look for changes over time.
The most recent estimate of abundance for the eastern Beaufort Sea Beluga stock is 39,258 whales (Muto et al. 2016). This number was derived from aerial surveys conducted in the Mackenzie Delta and eastern Beaufort Sea in 1992 that estimated 19,629 (CV 0.23) surface visible Belugas (Harwood et al. 1996) and a correction factor to account for submerged whales. Synoptic surveys for Belugas were conducted in the region only in 1992, but Beluga sightings were recorded during offshore Bowhead Whale (Balaena mysticetus) surveys in 1982, 1984, 1985, and 2007-09. The number of Belugas counted at the surface was substantially higher during the 2007-09 surveys but it is unclear whether this was due to a shift in distribution or population increase (Harwood and Kingsley 2013).
An isolated subpopulation of Belugas occurs in Cook Inlet, Alaska where they reside throughout the year (Hobbs et al. 2005, Goetz et al. 2012, Shelden et al. 2015a). Sightings are occasionally made outside of Cook Inlet in the Gulf of Alaska (Laidre et al. 2000), and there is a small group (< 20 animals) that is apparently resident in Yakutat Bay approximately 600 km to the east (O’Corry-Crowe et al. 2015) and is considered to be part of the Cook Inlet stock (Muto et al. 2016). Beluga abundance in the Inlet, including corrections for availability and sightability, is determined using aerial counts and video analysis of whale groups (Hobbs et al. 2000). The 2014 survey produced an estimate of 340 whales (CV 0.08; Shelden et al. 2015b). Abundance declined by nearly 50% between 1988 and 1994, and by about 1.3%/year during 1994-2014 (Hobbs et al. 2015, Shelden et al. 2015b).
Eastern Canada and Greenland
There are currently three main population centers for Belugas in Arctic Canada, High Arctic-Baffin Bay (HA-BB), Cumberland Sound, and Hudson Bay. A subpopulation that once occurred in southwest Greenland in winter is likely extirpated (NAMMCO in prep.). HA-BB Belugas summer mostly in nearshore waters around Somerset Island (Koski and Davis 1980, Smith and Martin 1994) and winter in northern Baffin Bay and off West Greenland (Doidge and Finley 1993, Heide-Jørgensen and Laidre 2004). An aerial survey of the Canadian High Arctic in summer 1996 produced an availability-adjusted abundance estimate of 21,213 whales (95% CI 10,985-32,619; Innes et al. 2002). A 2012 winter survey off West Greenland resulted in a corrected estimate of 9,072 Belugas (CV 0.32) (Heide-Jørgensen et al. 2017). Modeling by Innes and Stewart (2002) indicated a major decline in HA-BB Beluga abundance occurred between 1981 and 1994. Current trend in abundance is unknown.
The Cumberland Sound Beluga subpopulation remains in the Cumberland Sound area throughout the year (Richard and Stewart 2008). Aerial surveys were conducted in typically used portions of the Sound in 2014, and abundance was estimated using a combination of visual surveys and photographic counts.
The total abundance estimate (corrected for availability bias) was 1,151 whales (95% CI 761–1,744; Marcoux
et al. 2016). Marcoux and Hammill (2016) constructed a model of this subpopulation using survey data collected during 1980-2014 and harvest data for 1920-2015.
Results indicated that current abundance is substantially reduced compared to 1960 and that abundance is still declining.
Four Beluga stocks occur in the Hudson Bay region. The eastern Hudson Bay (EHB) and western Hudson Bay (WHB) stocks summer in the regions for which they are named and winter principally in Hudson Strait (NAMMCO in prep.). Although some interbreeding occurs on the wintering grounds (Turgeon et al. 2012), genetic studies show that the two groups are distinct (deMarch et al. 2003). Colbeck et al. (2012) found that cultural transmission of migration routes exists which likely acts to minimize interchange between the groups. Systematic aerial surveys of EHB Belugas have been flown seven times since 1985. Surveys flown in 2015 produced an availability-corrected estimate of abundance of 3,819 whales (CV 0.43; Gosselin et al. 2017). Modeling of the series of survey estimates and harvest data for 1972-2016 indicates that abundance declined during 1974-2002, but has been stable since then (Hammill et al. 2017). Abundance of WHB Belugas was most recently estimated from visual and photographic aerial surveys flown in summer 2015. The availability-corrected estimate of total abundance was 54,473 whales (95% CI 44,988-65,957; Matthews et al. 2017). Because of bad weather conditions, this estimate did not include the Ontario coast where nearly 15,000 whales were estimated in 2004 (Richard 2005). A comparison of surface abundance estimates from 2015 and 2004 for five strata surveyed in both years showed that 2015 counts were about 6% higher (NAMMCO in prep.). Belugas use James Bay in large numbers during the summer and remain in that region during winter (Bailleul et al. 2012). The 2015 aerial survey estimated availability-corrected abundance as 10,615 (CV 0.25; Gosselin et al. 2017). Estimates from similar surveys conducted from1985 to 2011 ranged from 4,720 to 19,439 whales so the trend in abundance is unclear. Belugas were once abundant in Ungava Bay, with summer aggregations in and near several rivers. Numbers are now greatly diminished with no animals sighted on-transect during aerial surveys conducted there since 1983 (NAMMCO in prep.). However, some Belugas still occur occasionally in the area as indicated by off-transect sightings during aerial surveys (Kingsley 2000) and land-based sightings (Doidge et al. 1994). Using data from surveys conducted during 1985-2008, Doniol-Valcroze and Hammill (2012) estimated Ungava Bay Beluga abundance to be 32 individuals (95% CI 0-94).
A relict subpopulation of Belugas occurs in the Saint Lawrence River estuary (SLE) that is isolated from all other subpopulations both geographically and genetically (Brown Gladden et al. 1999; de March and Postma 2003). Both the core range used in summer and the total range of SLE Belugas have shrunk considerably since the 1930s (Mosnier et al. 2010). The size of the SLE subpopulation is believed to have declined from 7,800 whales in the 1866 to about 1,000 in 1985 (Hammill et al. 2007). Abundance has been monitored since 1988 using photographic aerial surveys. An integrated population model using survey counts and vital rates indicated that abundance increased slowly between the 1960s and early 2000s then declined to an estimated 889 in 2012 (Mosnier et al. 2015).
Svalbard and Russian Arctic
The Svalbard Beluga subpopulation is geographically isolated and genetically differentiated from subpopulations to the east and west (O’Corry-Crowe et al. 2010). During the ice-free season Belugas in the archipelago are found very nearshore, often at the faces of glaciers (Lydersen et al. 2001). During winter, sea ice formation causes them to move offshore somewhat but they remain in the Svalbard area (Lydersen et al. 2002). Currently there is no abundance estimate for Svalbard Belugas but the first ever survey was to be conducted in summer 2017 (NAMMCO in prep.).
The Beluga subpopulation in the White Sea is genetically differentiated from other subpopulations (NAMMCO in prep.). In summer, the whales are seen in several aggregation areas in the major bays (Andrianov et al., 2009, Glazov et al. 2010a, Alekseeva et al., 2012). While some investigators believe that in winter Belugas move to the Barents Sea, they are seen in the White Sea in March (Glazov et al. 2010b) and all of the Belugas tracked with satellite-linked tags have stayed in the White Sea (Glazov et al. 2012, Svetochev and Svetocheva 2012, Kuznetsova et al. 2016). Aerial surveys for belugas were flown in the White Sea in July six times during 2005-2011. The abundance estimate for 2011 was 5,593 whales (CV 0.14), and estimates from prior years ranged from 5,009 to 7,464 (Solovyev et al. 2012a). Available data suggest that abundance is stable.
Belugas have been recorded at many other locations along the Arctic coast of Russia, including the Kara, Barents, Laptev, and East Siberian seas as well as Nova Zemlya and Franz Josef Land (Kleinenberg et al. 1964, Solovyev et al. 2012b). A compilation of observations made during 1958-1995 from sea ice reconnaissance flights showed many sightings in coastal and offshore waters from the Barents Sea to the Kara Sea but few observations in the East Siberian Sea (Belikov and Boltunov 2002). Boltunov and Belikov (2002) considered that the primary summer habitats are near Franz Josef Land and in the Kara Sea and western Laptev Sea, and that most of Belugas from this region winter in the Barents Sea. There are no estimates of current abundance, but given the size of the area and the number of animals taken by historical whaling (Boltunov and Belikov 2002), it is likely that Belugas were once numerous there.
Population Summary
Summing the various estimates above gives a total of approximately 195,000 Belugas in the surveyed subpopulations. Because no abundance estimates are available for Svalbard and the Russian High Arctic and the estimate for the White Sea is not corrected for availability, it is nearly certain that total rangewide abundance is more than 200,000. Taylor et al. (2007) calculated that in a pristine Beluga population 68% of all individuals would be mature. Using that value the total number of mature Belugas is estimated at about 136,000. The number of mature Belugas in the largest subpopulation, WHB, is about 37,000.
Generation time is an important parameter for several of the IUCN Red List criteria, and calculations of generation time require an accurate method for determining or estimating ages of individuals. For Beluga Whales, this has been done primarily by counting layers in the teeth of harvested or stranded animals. Counts of growth layer groups (GLGs) have usually been converted to age in years assuming there were two GLGs formed each year (Brodie 1971, Sergeant 1973, Burns and Seaman 1988, Heide-Jørgensen et al. 1994). Formation of two GLGs per year was supported by examination of teeth from captive, known age, individuals (Brodie 1982, Goren et al. 1987, Heide-Jørgensen et al. 1994). Stewart et al. (2006) measured the incorporation of atomic bomb radiocarbon into Beluga tooth GLGs, and used those measures to estimate age. When those estimates were compared to ages based on formation of one GLG versus two GLGs/year, the data fit the one GLG/year assumption. Lockyer et al. (2007) examined 10 teeth from captive Belugas and found clear support for one GLG/year in six of the specimens, but results for the others were equivocal. Hohn et al. (2016) considered that the bomb radiocarbon study and long-term photoidentification studies showed that GLG deposition is “unquestionably annual.” (also see Matthews and Ferguson 2014). However, Brodie et al. (2013) continued to argue for two GLGs/year, based on field observations of Beluga life history parameters in Cumberland Sound, captive animal studies, and suggested problems with studies that support one GLG/year. Using the assumption of two GLGs/year, Taylor et al. (2007) estimated generation time for belugas as 16.4 years for a population in a pre-disturbance state. If one GLG/year is actually the case, generation time would be much longer, but calculations using that assumption have not been done.
Data on historical sizes of Beluga subpopulations are sparse. Innes and Stewart (2002) estimated the historical carrying capacity (K) of the HA-BB subpopulation as 39,790 whales. Bettridge et al. (2016) estimated K for Sakhalin - Amur Belugas as between 13,200 and 20,800. Cumberland Sound Belugas were estimated to number 3,100 in 1960 (Marcoux and Hammill 2016). Hammill et al. (2017) estimated that there were 6,663 Belugas in EHB in 1974. Abundance of Cook Inlet Belugas in 1979 was estimated at 1,293 (NMFS 2003). Hammill et al. (2007) estimated that there were 7,800 Belugas (standard error 600) in the SLE in 1866. Comparing these figures with those for the most recent abundance estimates given above suggests a reduction of 88% for SLE belugas, and 28-74% for the other five subpopulations. While these comparisons show that some stocks have been substantially depleted and remain in that state, a species-wide reduction in abundance cannot be calculated. The difficulty of such a calculation is compounded by the lack of agreement on calibration of tooth layers for age estimation, which is central to determining generation length and the amount of depletion over time. The combined abundance of those six subpopulations known to be depleted constitutes less than 20% of the current species-wide abundance estimate, and there is no reason to think that all of the remaining subpopulations are similarly depleted.